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The Multiple Multipole Program (MMP) is a boundary method for computing electromagnetic fields, which is well established in high 

frequency electromagnetics and computational optics due to its flexibility in terms of accuracy control, field excitation, and fast 
convergence. As any other boundary method MMP cannot efficiently solve nonlinear problems. The purpose of this paper is to show a 
novel numerical method for treating local nonlinear regions within a large linear MMP model. The main idea of this approach is to apply 
the well-known discretization scheme of the domain Finite Element Method (FEM) within the nonlinear region and to couple it over a 
special numerical interface with the linear MMP model surrounding it. The theoretical details of this MMP-FEM coupling and practical 
examples are presented in this paper.       
 

Index Terms—Finite element method, domain method, multiple multipole program, boundary method, nonlinear materials.  
 

I. INTRODUCTION 
OUNDARY METHODS of computational electromagnetics 
such as the Boundary Element Method (BEM), Method of 

Moments (MoM), Method of Auxiliary Sources (MAS), 
Multiple Multipole Program (MMP) etc. approximate the 
unknown electromagnetic field within a computational domain 
by using various field sources distributed either over  
boundaries between different materials (BEM and MoM) or 
over the domains themselves (MAS and MMP) [1]. The 
common feature of all boundary methods is that they discretize 
only boundaries and not domains thus reducing the dimensions 
of the problem by one. This is a considerable advantage over 
domain methods such as the Finite Difference Method (FDM) 
or Finite Element Method (FEM) [2].  

The said advantage of boundary methods is very important in 
case of industrial applications dealing with large models of 
enormous geometrical complexity. Due to their theoretical 
background domain methods need a relatively large air-box that 
is demanding to construct and mesh for models with 
considerable size and complexity. Boundary methods do not 
require such an air-box at all, which is their second significant 
advantage. 

The main disadvantage of boundary methods is their lack of 
capability to treat nonlinear domains. In order to overcome this 
difficulty different hybrid boundary-domain methods were 
suggested in the past, such as for example FEM-BEM coupling 
[3]. Using FEM for nonlinear regions and involving BEM for 
linear ones removes the need for air-box but introduces an 
additional problem, namely numerical evaluation of singular 
integrals over the FEM-BEM interface, which is a very time-
consuming part. 

In this paper a theory of the FEM-MMP coupling is presented 
that removes the need for air-box and does not introduce any 
singular integrals over the coupling boundary. The method is 
simple, general, and intuitively clear.   

This main purpose and original scientific contribution of this 
paper is manifold: (a) to suggest a theoretical background for a 
novel FEM-MMP coupling, (b) to demonstrate the discretiza-
tion of the field equations by it, and (c) to show the accuracy of  

the method by using several simple examples.           

II. NUMERICAL METHOD 
To explain the basic idea of the method a very simple 

magnetostatic problem, presented in Figure 1, is defined. The 
problem consists of a line current (I), as the field source, placed 
outside of the computational domain and a ferromagnetic 
cylinder (Ω2) surrounded by air (Ω1). To describe the magnetic 
field in the computational domain the following field 
formulation by using the reduced magnetic scalar potential is 
used [2]: 
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where H1t, Hs, H1 is the total, source and reaction magnetic field 
of the domain 1, respectively. H2 is the reaction magnetic field 
of the domain 2 and Φ1, Φ2 are the reduced scalar magnetic 
potentials of the domain 1 and 2, respectively.  

To take the nonlinearity of the ferromagnetic cylinder into 
account the domain Ω2 is meshed and the unknown function Φ2 
over it is approximated by using the scalar FEM approach. 

 
Fig. 1. A simple magnetostatic problem used to demonstrate the basic idea of 
the suggested FEM-MMP coupling is shown. The field source is a line current 
(I) outside of the computational domain. A ferromagnetic cylinder Ω2 (µr=50) 
is surrounded by air Ω1 (µr=1). More information can be found in the text. 
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The domain Ω1 is linear and the unknown function Φ1 over it 
is approximated by the MMP approach, i.e. by defining a 
multipole 1

1M  in the middle of the ferromagnetic cylinder.    
The FEM and MMP approximations of the unknown 

function in the computational domain have the following form 
[1], [2]: 
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Equation (3) represents a classical multipole expansion of m-
th order, which is a standard MMP basis function. This is an 
analytical solution of the Laplace equation in the cylindrical 
coordinate system (r1, φ1) with the origin at the position of the 
multipole. Equation (4) is a classical FEM approximation of the 
scalar unknown function by using known shape functions Nj 
and unknown nodal values of the function Φ2j. 

Over the interface between two regions the following 
interface conditions must be fulfilled: 
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The coupling of the two methods can be explained by using the 
well-known FEM equivalent integral form of the magnetostatic 
boundary value problem (BVP) based on the reduced scalar 
magnetic potential: 
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Equation (5) is already imposed in the boundary integral of 
Equation (7). It will be shown in the subsequent full paper that 
Equation (6) yields the following integral form:  
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where Φ2i is the value of the scalar magnetic potential at the  
i-th node on the boundary Γ12, t is the tangential unit vector of 
the boundary Γ12, PN is the chosen reference point for zero value 
of the magnetic scalar potential (preferably on the boundary 
Γ12), and Pi is the i-th node on the boundary Γ12. 

Equation (7) and (8) along with the FEM and MMP 
discretization of the unknown functions (5) and (6) yield the 
following overdetermined system of equations: 
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where Nn is the number of nodes of the FEM mesh, Nmp is the  
number of matching points (boundary nodes of the FEM mesh), 
⊗  denotes the matrix obtained by imposing the interface 
condition (6) and 


 denotes the matrix obtained by imposing 

the interface condition (5). The unknowns of the system (9) are 
the coefficients of the function approximations (3) and (4). The 
matrix entries of the system (9) will be mathematically 
described in the subsequent full paper. The structure of the 
system matrix for the simple example presented in Figure 1 is 
shown in Figure 2a.    

It is worth mentioning that the FEM-MMP interface works 
better if it is not defined exactly along the border of the 
ferromagnetic cylinder, but in the air near the cylinder as shown 
in Figure 2b (a thin air layer around the cylinder belongs also to 
the FEM part of the model). The numerical features of the 
method together with more demanding examples will be 
presented at the conference and in the subsequent full paper. 

 
(a) 

 
(b) 

Fig. 2. FEM-MMP system matrix (9) in logarithmic scale (a) and magnetic field 
distribution (b) of the simple example defined in Fig 1. The radius of the 
ferromagnetic (µr=50) cylinder is 0.2m and the position of the line current and 
cylinder are (-0.01, 0)m and (0.075, 0)m, respectively.    
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